positive solutions for nonlinear systems of third-order generalized sturm-liouville boundary value problems with $(p_1,p_2,ldots,p_n)$-laplacian

نویسندگان

m. alimohammady

n. nyamoradi

چکیده

in this work, byemploying the leggett-williams fixed point theorem, we study theexistence of at least three positive solutions of boundary valueproblems for system of third-order ordinary differential equationswith $(p_1,p_2,ldots,p_n)$-laplacianbegin{eqnarray*}left { begin{array}{ll} (phi_{p_i}(u_i''(t)))'  +  a_i(t) f_i(t,u_1(t), u_2(t), ldots, u_n(t)) =0 hspace{1cm} 0  leq t leq 1, alpha_i u_i(0) - beta_i u_i'(0) = mu_{i1} u_i(xi_i),hspace{0.2cm} gamma_i u_i(1) + delta_i u_i'(1) = mu_{i2} u_i(eta_i), hspace{0.5cm}  u_i''(0) = 0,end{array} right.end{eqnarray*}where $ phi_{p_i}(s) = |s|^{p_i-2}s,$, are $p_i$-laplacianoperators, $p_i > 1, 0 < xi_i < 1, 0 < eta_i < 1$ and $mu_{i1},mu_{i2}> 0$ for $i = 1,2, ldots,n$.

برای دانلود باید عضویت طلایی داشته باشید

برای دانلود متن کامل این مقاله و بیش از 32 میلیون مقاله دیگر ابتدا ثبت نام کنید

اگر عضو سایت هستید لطفا وارد حساب کاربری خود شوید

منابع مشابه

Positive solutions for nonlinear systems of third-order generalized sturm-liouville boundary value problems with $(p_1,p_2,ldots,p_n)$-laplacian

In this work, byemploying the Leggett-Williams fixed point theorem, we study theexistence of at least three positive solutions of boundary valueproblems for system of third-order ordinary differential equationswith $(p_1,p_2,ldots,p_n)$-Laplacianbegin{eqnarray*}left { begin{array}{ll} (phi_{p_i}(u_i''(t)))'  +  a_i(t) f_i(t,u_1(t), u_2(t), ldots, u_n(t)) =0 hspace{1cm} 0  leq t leq 1, alpha_i u...

متن کامل

Positive Solutions for System of Third-order Generalized Sturm-Liouville Boundary Value Problems with (p,q)-Laplacian

Abstract: In this work, by employing the Leggett-Williams fixed point theorem, we study the existence of at least three positive solutions of boundary value problems for system of third-order ordinary differential equations with (p,q)-Laplacian  (φp(u ′′(t)))′ + a1(t)f1(t, u(t), v(t)) = 0 0 ≤ t ≤ 1, (φq(v ′′(t)))′ + a2(t)f2(t, u(t), v(t)) = 0 0 ≤ t ≤ 1, α1u(0)− β1u(0) = μ11u(ξ1), γ1u(1) +...

متن کامل

Existence of multiple solutions for Sturm-Liouville boundary value problems

In this paper, based on variational methods and critical point theory, we guarantee the existence of infinitely many classical solutions for a two-point boundary value problem with fourth-order Sturm-Liouville equation; Some recent results are improved and by presenting one example, we ensure the applicability of our results.

متن کامل

Positive solutions of higher-order Sturm-Liouville boundary value problems with derivative-dependent nonlinear terms

wherem≥ 3 and 1≤ q≤m – 2. We note that the nonlinear term F involves derivatives. This makes the problem challenging, and such cases are seldom investigated in the literature. In this paper we develop a new technique to obtain existence criteria for one or multiple positive solutions of the boundary value problem. Several examples with known positive solutions are presented to dwell upon the us...

متن کامل

Existence of Positive Solutions for Singular P-laplacian Sturm-liouville Boundary Value Problems

We prove the existence of positive solutions of the Sturm-Liouville boundary value problem −(r(t)φ(u′))′ = λg(t)f(t, u), t ∈ (0, 1), au(0)− bφ−1(r(0))u′(0) = 0, cu(1) + dφ−1(r(1))u′(1) = 0, where φ(u′) = |u′|p−2u′, p > 1, f : (0, 1) × (0,∞) → R satisfies a p-sublinear condition and is allowed to be singular at u = 0 with semipositone structure. Our results extend previously known results in the...

متن کامل

Positive solutions for discrete Sturm-Liouville-like four-point p-Laplacian boundary value problems

We consider the existence of positive solutions for a class of discrete second-order four-point boundary value problem with p-Laplacian. Using the well known Krasnosel’skii’s fixed point theorem, some new existence criteria for positive solutions of the boundary value problem are presented.

متن کامل

منابع من

با ذخیره ی این منبع در منابع من، دسترسی به آن را برای استفاده های بعدی آسان تر کنید


عنوان ژورنال:
caspian journal of mathematical sciences

ناشر: university of mazandaran

ISSN 1735-0611

دوره 2

شماره 1 2013

میزبانی شده توسط پلتفرم ابری doprax.com

copyright © 2015-2023